Boundary knot method: A meshless, exponential convergence, integration-free, and boundary-only RBF technique

نویسنده

  • W. Chen
چکیده

Based on the radial basis function (RBF), non-singular general solution and dual reciprocity method (DRM), this paper presents an inherently meshless, exponential convergence, integration-free, boundary-only collocation techniques for numerical solution of general partial differential equation systems. The basic ideas behind this methodology are very mathematically simple and generally effective. The RBFs are used in this study to approximate the inhomogeneous terms of system equations in terms of the DRM, while non-singular general solution leads to a boundary-only RBF formulation. The present method is named as the boundary knot method (BKM) to differentiate it from the other numerical techniques. In particular, due to the use of non-singular general solutions rather than singular fundamental solutions, the BKM is different from the method of fundamental solution in that the former does no need to introduce the artificial boundary and results in the symmetric system equations under certain conditions. It is also found that the BKM can result in linear analogization formulations of nonlinear partial differential equations with linear boundary conditions if only boundary knots are used. The efficiency and utility of this new technique are validated through a number of typical numerical examples. Some promising developments of the BKM are also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New advances in dual reciprocity and boundary-only RBF methods

This paper made some significant advances in the dual reciprocity and boundary-only RBF techniques. The proposed boundary knot method (BKM) is different from the standard boundary element method in a number of important aspects. Namely, it is truly meshless, exponential convergence, integration-free (of course, no singular integration), boundary-only for general problems, and leads to symmetric...

متن کامل

A meshless, integration-free, and boundary-only RBF technique

Based on the radial basis function (RBF), nonsingular general solution, and dual reciprocity method (DRM), this paper presents an inherently meshless, integration-free, boundaryonly RBF collocation technique for numerical solution of various partial differential equation systems. The basic ideas behind this methodology are very mathematically simple. In this study, the RBFs are employed to appr...

متن کامل

New Insights in Boundary-only and Domain-type RBF Methods

This paper has made some significant advances in the boundary-only and domain-type RBF techniques. The proposed boundary knot method (BKM) is different from the standard boundary element method in a number of important aspects. Namely, it is truly meshless, exponential convergence, integration-free (of course, no singular integration), boundary-only for general problems, and leads to symmetric ...

متن کامل

Relationship between boundary integral equation and radial basis function

This paper aims to survey our recent work relating to the radial basis function (RBF) from some new views of points. In the first part, we established the RBF on numerical integration analysis based on an intrinsic relationship between the Green's boundary integral representation and RBF. It is found that the kernel function of integral equation is important to create efficient RBF. The fundame...

متن کامل

RBF-based meshless boundary knot method and boundary particle method

This paper is concerned with the two new boundary-type radial basis function collocation schemes, boundary knot method (BKM) and boundary particle method (BPM). The BKM is developed based on the dual reciprocity theorem, while the BKM employs the multiple reciprocity technique. Unlike the method of fundamental solution, the two methods use the non-singular general solution instead of singular f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000